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The shape and stability of a bubble at the axis of a 
rotating liquid 

By D. K. ROSENTHAL 
Department of Mathematics, University of Melbourne 

(Received 7 September 1961) 

The shape of a bubble of one liquid inside a denser body of liquid which rotate 
rigidly together is determined, the effect of gravity being neglected. When the 
angular velocity of the liquids is zero the bubble assumes a spherical form, and 
with increasing angular velocity the bubble flattens at the equator and the length 
increases. It is found that the length of the bubble is asymptotically proportional 
to the four-thirds power of the angular velocity. If the speed of the rotation is 
held constant and the volume is increased, then the bubble elongates, the radius 
approaches a limiting value, and the bubble length increases almost linearly 
with the volume. This result suggests a method whereby the interfacial surface 
tension can be measured. 

In  the second part of the paper the stability of a long bubble subjected to 
small amplitude axisymmetric disturbances sinusoidal in the axial direction is 
investigated. The relation between the wave-number and angular velocity for 
neutral stability is elliptic. When account is taken of the decrease in the radius 
of the undisturbed bubble with increase in the angular velocity, it  is found that 
the bubble is stable to all wave-lengths provided the radius attains at least 
63 % of the limiting value. A criterion is then found for the minimum length of 
the bubble consistent with stability. 

1. The shape of a bubble in equilibrium 
The equilibrium of a revolving isolated finite mass of liquid under the action 

of capillary force was discussed by Lord Rayleigh (1914). He found a solution 
in which the bubble is a surface of revolution which meets the axis of the rotation. 
If there is no rotation then the bubble assumes a spherical form while under the 
influence of rotation, the sphere flattens at  the poles and the oblateness increases 
with the angular velocity. 

In  this paper account is taken of a body of liquid surrounding the bubble. 
The shape of this bubble of one liquid (or fluid) which is immersed in and rotates 
with another liquid is determined by the balance of the surface tension and the 
hydrodynamic pressure. If the effect of the gravitational field is negligible and 
if the external body of liquid is denser than the bubble, then the interface is a 
surface of revolution which meets the axis of rotation. This suggests the use of 
cylindrical polar co-ordinates (T,  8, z )  with the x-axis as the axis of the rotation. 

The pressure distributions in the two media are given by 

and 
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where w is the angular velocity of the system and the suffices 1 and 2 correspond 
to the bubble and the liquid outside the bubble, respectively. 

The problem is to find the equation of the interface, r = f (z) say, such that the 
pressure discontinuity at  every point of this surface is T J ,  where T is the surface 
tension and J is the total curvature. The kind of solution sought is one for which 
the plane section through the axis of the rotation has no points of inflexion. 
Other shapes are mathematically possible but they do not correspond to 
observation. 

r 

t 

FIGURE 1. A section by a plane through the axis of 0%. 

For a surface of revolution 

J,’d( f ). 
f 4f ( l + f ’ 2 ) 6  , 

hence, the differential equation governing the shape of the bubble is 

with f = 0 at  z = _+land f ’  = 0 at z = 0. 
This equation can be integrated to give 

the constant of integration is zero, because the bubble meets the axis of the 
rotation. This shows that the interface cuts the z-axis at  right angles. 

If the maximum radius of the bubble OB = a and the curvature at  the pole of 
the section through the axis of the bubble is - ( 1  i- e) /a ,  then 

Using the condition that f ’  = 0 at f = a and combining (4) and (5) leads to 

_ -  e ( P 2 - P 1 ) W 2  

a3- 8T * 

The differential equation now simplifies to the form 

(1+f ’2 ) -+  = ( l + e ) - - e -  f f 3  

a a3’ 
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Since the curvature of the section through the axis of the bubble is 

3efz  l + e  
a3 a 

and remains negative and (pz - pl )  > 0,  it follows that 

O < e < + .  

This inequality is equivalent to 

and 

(9) 

which shows that the maximum radius of the bubble adjusts itself to a value for 
which the capillary force can balance the combined effects of the centripetal 
force and the pressure difference on the axis of the rotation. The second inequality 
in (10) also shows that the pressure difference at  the pole of the bubble must be 
greater than 2T/a, the pressure difference required to maintain a spherical bubble 
of radius a. This difference is not a controllable parameter but adjusts itself once 
the angular velocity and the volume of the bubble is given. This adjustment is 
possible because of the finite compressibility of real liquids. 

From (7) the length and volume of the bubble can be found; namely 

where A = x (  1 + e - exz).  
Using the identity 

2na3x2A 

( 1  - Az)9 
2nd( 1 + e )  A 
3e( 1 - Az)* 

- 

and integrating over the range ( 0 , l )  leads to 

Equations (61, (11) and (13) shows that, as the angular velocity increases 
from zero, the parameter e increases within the range 0 < e < 0.5. Moreover, 
the limiting value of e must be 0.5; for, if it is less, then the integrals in (11) 
converge which shows that the angular velocity is a bounded function of the 
volume, surface tension and the density difference. This leads to a contradiction. 

We can now deduce that the bubble is quasi-cylindrical when the angular 
velocity is large. This depends on the behaviour of the integrals in (1 1 )  when the 
parameter e is near 0.5. There is then a ‘tendency to diverge’, i.e. a small increase 
in e produces a large increment in the ratio Z/a. It follows from ( 1 3 )  that the 
volume is asymptotically proportional to 2nZaZ, the volume of a cylinder having 
the same length and radius as the bubble. 
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Calculations of the bubble dimensions 

The equation determining the length of the bubble can be transformed to a 
more convenient form by the substitution 

where 

Then, 

with k2 = [2(L+ 1)s- l]/L and a = tan-lL4.J 

kind: 
This integral can be written in terms of elliptic integrals of thefirst and second 

(16) 

The latter form has been used to compute the bubble dimensions in terms of 
the independent variable sin-l k, which takes all the values in the range (0, in) 
when 0 < e < 0.5. The appropriate formulae for the determination of the 
physical constants are 

Z/a = e-lcota[B'(k, &~)-P(k,a)]-tana[E(k, &n)-E(k,a)]+ 1-cosa. 

1 + (1 - k2+ k4)+ 

k2 
(L+ l )& = - 

and 

Table of computed data 

Values of V/c3,  alc and lla [c3 = 8T/(p2-pl) w2] tabulated at  intervals of sin-lk. 

sin-lk V/c3 alc lla 
15" 0.005 0.106 1.001 
20" 0.016 0.157 1.004 
25" 0.040 0.212 0.010 
30" 0.085 0.271 0.020 
35" 0.161 0.333 1.038 
40" 0.280 0.397 1.067 
45O 0.457 0.461 1.109 
50" 0-705 0-523 1.169 
5 5 O  1.045 0.582 1.252 
60" 1.547 0.636 1.363 

s i l - l k  v/c3 
65" 2.078 
70" 2.842 
75" 3.863 
77" 4.378 
79" 4-982 
81" 5.709 
83" 6.622 
85" 7.844 
87" 9.706 
89" 13.684 

alc 
0.683 
0.722 
0.753 
0.763 
0.772 
0.779 
0.785 
0.789 
0.792 
0.794 

lla 
1.511 
1.712 
1-993 
2.139 
2.315 
2-530 
2.805 
3.181 
3.764 
5.024 

These calculations show that the radius of the cylindrical portion of the 
bubble is closely approximated by the formula a3 = 0 . 5 ~ ~  when the angular 
velocity of the system is large. In  fact, for V/c3 = 5, 10 or 14 this approximation 
is within 3, 0.2 or 0.02 yo, respectively. 

The equations of the asymptotes to the three graphs of figure 2 are 

and 

V/c3  = n(l/a- +), 

V/c3  = 2fn(l/c - 2%/3), 

a3 = 0 . 5 ~ ~ .  
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These serve as a check on the calculations as well as an indication of the shape of 

For small values of V/c3 the bubble is an ellipsoid correct to the fist order in e. 

(19) 

the bubble when V/c3 is large. 

This follows from the inequality 

(1 - e)-1 < Z/a < (1 - 2e)-l(l-  e), 

39 c 

0 
0 - 

FIGTJRE 3. The bubble dimensions at angular velocities of 1, 2, 3 and 4. 
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which expresses the condition that the volume of the bubble lies between that 
of an enclosed prolate spheroid with the same major axes and that of a domed 
cylinder with hemispherical ends. 

To show that the bubble does enclose such a spheroid it is sufficient to consider 
the difference between the abscissae of the plane section through the bubble and 
the ellipse having the same major and minor radii. This difference is given by 

and can be shown to be positive if 0 < r < a and 0 < e < 0-5. 
If the volume of the bubble and the density difference between the two liquids 

is known, then a measurement of length and angular velocity is sufficient to 
determine the interfacial surface tension. If the volume of the bubble is so large 
that the bubble had nearly attained its limiting radius then the second equation 
of (18) can be used to calculate T. The degree of accuracy of this method can be 
estimated from further measurements. 

An investigation of the cubic equation from which T is to be calculated shows 
that the larger positive root is appropriate; for otherwise P/c3 is not greater than 
0.5 and the equations (18) are not then applicable. 

2. The stability of a long bubble to axisymmetric disturbances 
Some conditions of stability of an almost cylindrical bubble can be inferred 

from a paper by Lord Rayleigh (1892). He showed that in a non-rotating field 
the bubble was unstable to axisymmetric disturbances whose wave-length 
exceeded the circumference of the bubble, because then the surface area decreases 
with a consequent release of surface energy. This surplus energy enables the 
disturbances to grow. 

Hocking (1960) went a little further by considering the stability of a rigidly 
rotating column of liquid surrounded by a fluid of negligible density. Here, the 
rotation has a destabilizing influence and the wave-length of a neutral axi- 
symmetric disturbance is shorter than the circumference of the column. 

The question of stability of a cylindrical bubble of finite volume surrounded 
by a denser fluid is to be investigated. The rotation has a stabilizing influence 
for a bubble of given radius, and for a given angular velocity the neutral dis- 
turbance has a wave-length greater than the circumference of the bubble. The 
decrease in bubble radius which accompanies an increase in the angular velocity 
suggests that a previously neutral disturbance of given wave-length may 
become unstable. One of the results to be established here is that the stabilizing 
influence of the increased centripetal force offsets the approach to instability, 
due to decrease of radius, and that a long bubble of sufficiently small radius is 
stable at  all wave-lengths. It is here assumed that the interface is a cylinder and 
that end effects may be neglected. 
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We shall consider the effect of a disturbance of small amplitude on the bubble. 
The steady state solution of this problem is given by 

- u = 0, Z = wr,  W = 0, p = ipw2r2+p,,, 

so, on putting (u, v, w) and p as the departures from the steady state solution, 
the equations of motion become 

aw l a p  au 
ar , - + 2wu = 0, - 

at at at 
= lap av 2wv = --- -- 

and the continuity equation becomes 

These equations have been linearized by neglecting the squares of the per- 

Equation (22) shows that there exists a stream function @ = @(r, z,  t )  such that 
turbed components of velocity. 

This can be used to eliminate p from the equations of motion; hence 

To find the solution of this differential equation we can make a Fourier analysis 
with respect to x and assume a exponential dependence on the time. This is 
suggested by the theory of normal modes. 

@ = exp i(at +px)f(r) ;  (25 )  Let 

then substitution in (24) yields the Bessel-type differential equation 

r2f” - rf’ + n2r2f = 0,) 

with 

If the equation of the disturbed interface is taken to be 

where 7 = ~ ( x ,  t)  measures the displacement of the surface from its undisturbed 
position, then, since the interface moves with the liquid, 

_ -  
The above equations lead to 

i nap 
P  PI,^ = -expi(at+pz) [al,2Jo(nr)-,!?l,2Yo(nr)] 

P and 7 = - exp i(at +px) a,J,(nu), a 

provided that n + 0. The constants of integration aIj2 and ,!?1,2 are to be deter- 
mined from the boundary conditions. 
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The stability criterion 

The boundary conditions that apply to this problem are 

tension; 
(a )  that the pressure discontinuity at the interface be balanced by the surface 

( b )  that the two liquids remain in contact throughout the disturbance; 
(c )  that the normal velocity at an outer cylindrical boundary at r = b be zero. 
Since the total curvature a t  a point on the interface is (l-q/a)/a-q”, it 

follows that the pressure discontinuity equation is 

Pz 
(30) from which the stability criterion can be found. 

The next step is to find a necessary and sufficient condition for a small ampli- 
tude axisymmetric disturbance sinusoidal in the axial direction to be stable. 
We shall consider the right-hand side of (30) and show that it is positive whenever 
a2 > 0 and that it tends to zero as a2 -+ 0 in a suitable manner. 

Suppose that cr2 > 4w2 (which implies stability); then the right-hand side of 
the above equation is 

where m2 = p2(1 -4w2/a2) > 0. It follows that this is positive for all values 
of m > 0 and hence, that 

p2a2 + (p, - p,) a3w2/T > 1. (32) 
If 0 < cr2 < 4w2, then the region outside the bubble may contain nodal 

surfaces whose positions are given by those roots of the equation 

which satisfy 0 < r < b. 
For convenience b, will be defined as the distance from the axis of the rotation 

to the first nodal surface outside the bubble. Hence na and nb, lie between the 
same two zeros of J.(x). Since 

J,(nb) Yl(nr) -J,(nr) Y,(nb) = 0 (33) 

y,(4 Jl(4 - Yl(4 J o ( 4  = I/$, (34) 
the right-hand side of (30) can be written 

) (35) 
na { (P2-P1)Jo(na) ; 1 /naJ,2 (na) 

p2a2 i- n2a2 P2 J h a )  Y,(nb,)/J,(nb,) -Y,(n~)/J,(na) 
with b replaced by b,, because b, is a root of (33). This term is positive when 
Jo(na)J,(na) < 0. 

If  Jo(na)Jl(na) > 0, then the right-hand side of (30) is clearly positive. This 
shows that, for any stable disturbance, condition (32) is necessary. 

To show that this condition is also sufficient it is enough to find the neutral 
curve at the limit of instability. This is done by using the asymptotic formulae 
for modified Bessel functions and letting cr2 -+ 0 through other than real positive 
values. 
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which shows that the right-hand side of (31) tends to zero. Hence 

is a necessary and sufficient condition for stability. 

p2a2 + (pz - p l )  a3u2/T > 1 (37) 

+ 

FIGURE 4. The neutral curve. 

For an actual bubble i t  has been shown that the radius was dependent upon 
the physical constants of the system. In  fact the limiting radius is given by 

If the bubble is long and end effects are negligible then the stability criterion can 
be expressed in the simplified form 

which shows that the bubble is stable to all wave-lengths if its radius has attained 
at least 63 % of the limiting value. This is certainly true if the bubble length 
exceeds I ,  = 0 . 5 4 ~ .  

When the bubble radius is less than the critical value the centripetal force is 
insufficient to balance the destabilizing influence of the capillary force unless 
the wave-length of the disturbance is sufficiently small. 

In  conversation Dr G. K. Batchelor pointed out to the author that viscosity 
can have no effect on the curve of neutral stability because it corresponds to a 
steady rigid body rotation. Thus all the results obtained here concerning the 
condition for instability apply equally to a bubble of viscous liquid immersed 
in a second viscous liquid. 

(pz-pl )  wza: = 4T. (38) 

p2a2 > 1 - 4a3/a:, (39) 

The author wishes to thank Dr G. K. Batchelor for his invaluable assistance 
in the preparation of this paper and Prof. T. M. Cherry who read the manuscript 
and checked the algebra in the first half of the paper. 
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